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LEITER TO THE EDITOR 

Chiral coefficient-a measure of the amount of structural 
chirality 

G Gilat 
Physics Department, Technion, Haifa 32000, Israel 

Received 15 March 1989 

Abstract. A new concept of quantitative measure of chiral structure is introduced and 
labelled as chiral coefficient ,y. A distinction is made between geometric and physical 
chiralities and ,y is defined for various physical cases. Few general geometrical features 
are discussed and it is shown that for every chiral body there exists a natural z direction 
depending on the physical property treated. Possible practical applications of this concept 
are discussed. A few simple examples of the chiral coefficient of mass ,ym for chiral 
molecules are treated. 

Structural chirality is an old and well known phenomenon. Almost any arbitrary 
macroscopic object, such as a piece of rock, is chiral or asymmetric. On the microscopic 
scale there exist a few well known examples of chiral structures such as a quartz or 
chiral molecules such as amino acids. It is well known that chiral molecular structure 
gives rise to several effects associated with the rotation of the vector of polarisation 
of light (for an excellent review of the phenomena of optical activity, see [l]). 

Up to now, structural chirality has largely been a qualitative concept associated 
with left-right asymmetry, although a few early attempts to quantify it have already 
been made [2-51. It is the purpose of the present letter to propose a general quantitative 
definition for structural chirality. The meaning of this concept is that a question of 
'how much chirality?' may receive a quantitative answer. The definition for the amount 
of structural chirality, or chiral coefficient, is based on purely geometrical considerations 
which can readily be extended to any physical object, macroscopic as well as micro- 
scopic. Before presenting the complete new definition, let us first recall that a three- 
dimensional chiral object cannot be made to completely overlap its mirror image by 
any continuous, i.e. rotational and/or translational, transformation. A similar definition 
also exists for ZD chiral objects, such as asymmetric triangles within a plane. 

For simplicity, let us look at any 3~ chiral object of volume V. Let 0 be its centre 
of volume cv. At this stage only purely geometric bodies are considered. Let us pass 
a plane MP through 0 which serves also as a double mirror plane that reflects the body 
upon itself. In figure 1 the situation is illustrated by a 2~ asymmetric quadrangle. 
According to the definition of chiral objects, the volume of the reflected image of the 
body cannot fully overlap the original body and vice versa. There must exist a certain 
excess volume U that does not overlap. Let us now regard the two modes of chirality 
generated by MP as two independent enantiomers of the same object. Let us now apply 
all possible transformations, such as rotations, translations and reflections on one 
enantiomer with respect to the other until an absolute maximum volume of overlap 
VO between the two is found (area So in the 2~ case). The minimal non-overlap volume 
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Figure 1. ABCD is a 2~ chiral object and 0 is its centre of area. MP is a double mirror 
line (plane for a 3D object) passing through 0. A’B’C’D’ is the mirror reflection of ABCD. 
The blank areas are the non-overlapping parts of ABCD and its mirror image and their 
total area is s. S is the area of ABCD and ,y = s/2S. Upon varying the orientation 0 of 
M P  around 0 for 0 s 0 s T, it is possible tci find smin and define ,ys = smi,/2S as a chiral 
coefficient of area. 

is umin, ( smin for 2 ~ )  where umin = 2( V - Vol. xV, the volume chiral coefficient is defined 
as 

x v  = V m i n l 2  v. (1) 

For xv=O, the body is symmetric. In a similar way the area chiral coefficient is 

x s  = S m i n l 2 S  (2) 

and S is the area of the chiral body. It is easy to show that xv, or xS, must satisfy 
0 S xv S 1 and xV is probably closer to 0 than to 1. 

As yet only geometric chiralities have been considered and a natural step forward 
is to regard physical bodies as well. An obvious next case would be a chiral body 
with a continuous mass distribution of density p. If p =constant then the definition 
of xm, the chiral coefficient of mass, is almost identical to that of xV, where mmi, = pumin 
and M = p V  

Xm = mminI2M. ( 3 )  

The case of p # constant can readily be treated too. Let p ( r )  be the mass density 
of one enantiomer so that p * ( r * )  is the mass density of its mirror image, where r and 
r* are defined with respect to an arbitrary fixed point. Now we apply the same 
transformations and we search for maximum mass overlap MO or, equivalently, for 
mmin being an absolute minimum of 

where V’ is the volume for which p # p* .  xm is given by (3). 
A similar, and perhaps physically more significant, definition is that of x+, the 

electronic wavefunction distribution over a chiral molecule or unit cell of a crystal. 
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The procedure here is exactly the same as for mmin and the search is for an absolute 
minimum of 

where it is assumed that the denominator is normalised to 1. 

0, so that xn is defined as 
The chiral coefficient xS can be generalised for any Hermitian quantum operator 

where (0) is the expectation value of R and $' is the complex conjugate of 4. 
Incidentally, it is important to realise that the origin of chirality in the Schrodinger 
equation is in the possible asymmetry of the potential V ( r ) .  

A similar procedure exists also for a discrete mass distribution such as in molecules 
or in unit cells of a crystal. Let mi, i = 1,. . . , n, be the mass distribution and ri the 
location of mi with respect to some point 0. The mass distribution is confined to some 
finite volume V' that contains all the point masses. The procedure is very similar to 
that of continuous and variable mass distribution. m' is given by 

where my located at ri is the mirror reflection of mi located at r. We now apply the 
necessary transformations and search for mmin, the minimum of m'. If M = Ximi then 
xm is given by (3) for a discrete mass distribution. The case of n = 4 atoms per molecule 
can be easily treated. For NHDF we obtain ,ym = 0.028 and for CHFClBr xm = 0.088. 
Incidentally, it is quite possible to have xo = 0 whereas X b  # 0 for two different chiral 
coefficients. For instance, take a symmetric tetrahedron and put four different masses 
at its corners and then xV=O, xm# 0. 

In addition to ,ym, x+ and ,yn there may exist other coefficients. It is well known 
that various macroscopic devices, such as windmills, rotating water sprinklers, and the 
Crookes radiometer, to name a few, are asymmetric. A common feature of all these 
examples is that they all possess chiral structure that enables them to choose a definite 
sense of rotation, clockwise or counterclockwise, when interacting with different media 
[6,7]. Such an interaction between a chiral device and some medium can be referred 
to as 'chiral interaction'. A common feature to all these examples is their massive 
rotation. There is another kind of chiral interaction that does not involve mass rotation, 
such as in electric cells, which may be referred to as chiral interaction of the second 
kind. For massive rotation the net result of chiral interaction is the transfer of angular 
momentum to a rotating mass. The chiral coefficient xI of interest in such cases would 
be that of the moment of inertia which can be similarly defined. For the case of 
Crookes' radiometer the physical property of interest is the chiral coefficient ,ye of the 
distribution of a, the light absorption coefficient over the body. 

The purpose of these examples is to demonstrate the wide range of physical 
chiralities that may exist and the possibility of defining a dimensionless chiral coefficient 
xj for each of them that satisfies 0 s  ,yj S 1. In many cases it may be possible to analyse 
the physical nature of the interaction and evaluate it by some appropriate formulae. 
The amount of power that can be transferred to the device by chiral interaction must 
be proportional to the appropriate chiral coefficient xj associated with the chiral device. 
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Let us now derive a few general conclusions from the definitions of the various 
chiral coefficients xj ,  and for simplicity let us consider xV although these conclusions 
are true for any physical xj .  It is obvious that in order to evaluate xV it is necessary 
to minimise umin which is equivalent to maximising the overlap volume V,. In general, 
V, can be either symmetric or asymmetric. In the case where it is symmetric there 
exists at least one mirror plane (or line in 2D cases) the normal to which may be 
regarded as a preferred z axis of the chiral body. For each physical property j there 
exists a different z axis. In cases when more than one direction exists for a given 
property j ,  then we have ‘degenerate chirality’. When the maximum overlap volume 
Vo is asymmetric, then it is possible to view it in a mirror and obtain a mirror image 
of the asymmetric volume V,. The situation now is that we have on each side of the 
mirror both enantiomers and let us mark Vo on each side of the mirror. Now it is 
possible to take one enantiomer (bay L) and overlap it completely with the same L on 
the other side. There now exist two different domains of maximum asymmetric overlap 
of equal volume V, on each enantiomer. In other words, the case of maximum 
asymmetric overlap must be at least ‘doubly degenerate’. It is easy to show that the 
transition of one asymmetric overlap to another results from a simple translation of 
one enantiomer with respect to the other. The direction of such a (linear) translation 
can also be regarded as a natural z axis for the chiral body. As a conclusion of this 
discussion, it is possible to state in general that (i)  there exist two classes of chiralities, 
of symmetric and asymmetric maximal overlap, where the second class is doubly 
degenerate, and (ii) there always exists a preferred direction for any chiral body. 
These conclusions are also general for any physical chirality. 

Let us now look briefly into earlier attempts to quantify chirality. Kitaigorodskii 
[2]t proposed a parameter E where 

& = 1 - VNO/ VO (8) 

x”=(1-&)/(3--) ( 9 )  

and VNo = umin. It is easy to show that 

where -cod 1. Another attempt was made by Rassat [3] but his definition does 
not correspond to xV in a simple manner. The case of 2~ chirality was recently treated 
151 in the context of computer pattern recognition. To the best of the author’s knowledge 
the extension to physical chiralities is proposed here for the first time. 

At this stage it is necessary to emphasise that the main significance of the chiral 
coefficient x, geometric or physical, is conceptual. The property of structural chirality, 
which has been until now a qualitative feature, receives a quantitative meaning via xi, 
which can vary according to the different physical aspects of this asymmetry. The 
practical aspect of the various chiral coefficients is that it now becomes possible, in 
principle, to compute chiral coefficients of various physical properties of chiral objects. 
In particular, it becomes possible to assign a chiral coefficient xi to any chiral molecule 
or unit cell of a crystal. As it now stands, this may involve a considerable amount of 
mathematical and computational effort [ 5 ] ,  but the definition is valid. 

Let us look now into possible practical applications of chiral coefficients. In the 
microscopic realm there exists the problem of chiral recognition [8 ,9 ] .  Another 
application is involved in any attempt to transform a symmetric into chiral molecule. 
The amount of chirality associated with this process can be estimated by the change 

t The author is grateful to Professor A Collet for this information. 
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of ,y$, which becomes a natural variable for the amount of energy involved in such 
symmetry breaking. Another practical aspect of the concept of the chiral coefficient 
xj is the possible calculation of the magnitude of chiral interactions. Hopefully the 
calculation of this effect can be separated into two independent factors. The first one 
is the relevant chiral coefficient and the second includes the physical content of the 
interaction. The present letter, however, is concerned only with chiral coefficients. 

Most of the known chiral interactions involve macroscopic chiral devices interacting 
with various media. The only well known microscopic chiral interaction is the effect 
of optical activity and associated effects of circular dichroism (CD) and Cotton effects 
[ 1,101. The physical aspects of the rotation of the vector of polarisation were analysed 
[ll-131 in terms of the induced polarisability of the atoms in a chiral molecule such 
as CHFClBr. The relevant chiral coefficient for this case involves the induced polarisa- 
bility. It may well be the case that the reason why the quantum mechanical treatment 
[ 141 of optical activity is less successful [ 11 has had to do with the lack of an appropriate 
measure of the amount of chirality involved, i.e. the lack of xn for the proper operator 
R that deals with this effect. Another effect of chiral interaction between amino acids 
or proteins and polar solvents was predicted [2,6,7] by the same author but is still 
unobservable. The magnitude of this interaction may be estimated by using an appropri- 
ate xi. 

Another feature associated with this concept is the possibility of assigning an 
enantiometric title L or D to certain chiral bodies. In general it is impossible to pick 
up a piece of rock and say whether it is L (left) or D (right). In order to make a 
meaningful assignment it is necessary to have a direction that refers to the object. This 
is the case for many pairs of organs in human beings and other species of animals. 
The direction is from the back to the front of the creature, which enables us to 
distinguish between a left and right hand, for instance. The assignment of L or D is 
also relevant to chiral devices that rotate due to some perturbation that advances along 
a straight line. If the sense of rotation is always right then this is a D-enantiomer. 
This is the case with chiral molecules or unit cells that are optically active, or with a 
skew wind propeller. Such devices possess what is regarded here as odd chirality. 
There exist other chiral devices such as windmills or rotating water sprinklers for which 
the sense of rotation reverses upon looking at it from opposite directions. Such a 
device has an even chirality and it is senseless to label it by L or D. Whenever it is 
possible to define L or D chirality it may be convenient to define x!- = -x,” < 0. 

In conclusion, a new concept of quantitative measure of structural chirality, namely 
a dimensionless chiral coefficient x,, has been introduced and defined for geometric 
and physical chiralities. This definition contributes quantitative meaning to structural 
chirality. It is also shown that every chiral body has a natural direction associated 
with its asymmetry. This definition may have a wide range of applicability in molecular 
and crystalline physics, chemistry and biology. 

I wish to thank Mrs H Vinner and my son I Gilat for many helpful discussions. The 
research was supported by the Fund of Promotion of Research at the Technion. 
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